Multiple solutions to a class of inclusion problems with operator involving p ( x ) - Laplacian

نویسنده

  • Qingmei Zhou
چکیده

In this paper, we prove the existence of at least two nontrivial solutions for a nonlinear elliptic problem involving p(x)-Laplacian-like operator and nonsmooth potentials. Our approach is variational and it is based on the nonsmooth critical point theory for locally Lipschitz functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

Existence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator

The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.

متن کامل

A Class of nonlinear $(A,eta)$-monotone operator inclusion problems with iterative algorithm and fixed point theory

A new class of nonlinear set-valued variationalinclusions involving $(A,eta)$-monotone mappings in a Banachspace setting is introduced, and then based on the generalizedresolvent operator technique associated with$(A,eta)$-monotonicity, the existence and approximationsolvability of solutions using an iterative algorithm and fixedpint theory is investigated.

متن کامل

Existence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic

We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...

متن کامل

Existence results of infinitely many solutions for a class of p(x)-biharmonic problems

The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013